Sitemap   Contact   中文    CAS
Home About Us Faculty and staff Research Collaboration Papers Links
  • Orientation and Interests
  • Research Progress
  • Location: Home > Research Progress
    Controlling Assembly of Paired Gold Clusters within Apoferritin Nanoreactor for in Vivo Kidney Targeting and Biomedical Imaging

    Functional nanostructures with high biocompatibility and stability, low toxicity, and specificity of targeting to desired organs or cells are of great interest in nanobiology and medicine. However, the challenge is to integrate all of these desired features into a single nanobiostructure, which can be applied to biomedical applications and eventually in clinical settings. In this context, we designed a strategy to assemble two gold nanoclusters at the ferroxidase active sites of ferritin heavy chain. Our studies showed that the resulting nanostructures (AuFt) retain not only the intrinsic fluorescence properties of noble metal, but gain enhanced intensity, show a red-shift, and exhibit tunable emissions due to the coupling interaction between the paired Au clusters. Furthermore, AuFt possessed the well-defined nanostructure of native ferritin, showed organ-specific targeting ability, high biocompatibility, and low cytotoxicity. The current study demonstrates that an integrated multimodal assembly strategy is able to generate stable and effective biomoleculenoble metal complexes of controllable size and with desirable fluorescence emission characteristics. Such agents are ideal for targeted in vitro and in vivo imaging. These results thus open new opportunities for biomolecule-guided nanostructure assembly with great potential for biomedical applications.

    (Cuiji Sun, Hui Yang, Yi Yuan, Xin Tian, Liming Wang, Yi Guo, Li Xu, Jianlin Lei,  Ning Gao, Gregory J. Anderson, Xing-Jie Liang, Chunying Chen, Yuliang Zhao , and Guangjun Nie. J. Am. Chem. Soc. 2011, 133, 8617–8624)

    Copyright © 2011, Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
    Chinese Academy of Sciences